On the Combinality of Evidence in the Dempster-Shafer Theory

نویسندگان

  • Lotfi A. Zadeh
  • Anca L. Ralescu
چکیده

In the current versions of the Dempster-Shafer theory, the only essential restriction on the validity of the rule of combination is that the sources of evidence must be statistically independent. Under this assumption, it is permissible to apply the Dempster-Shafer . rule to two or more distinct probability distributions. An essential step in the Dempster-Shafer rule of combination of evidence is that of normalization. The validity of normalization is open to question, particularly in application to probability distributions (Zadeh, 1976). At this juncture, the validity of normalization is a controversial issue. In this paper, we construct a relational model for the Dempster-Shafer theory which greatly simplifies the derivation of its main results and cast considerable light on the valldity of the rule of combination. The relational model is augmented with what is called the ball-box analogy, yielding an intuitively simple way of visualizing the concepts of belief and plausibility. t Computer Science Division, University of California, Berkeley, CA 94720. * Department of Computer Science, University of Cincinnati, Cincinnati. OH 45221. Research supported in part by NSF Grant DCR-8513139, NASA Grant NCC-2-275 and NESC Contract N00039·84-C-0243.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sensor-Based Scheme for Activity Recognition in Smart Homes using Dempster-Shafer Theory of Evidence

This paper proposes a scheme for activity recognition in sensor based smart homes using Dempster-Shafer theory of evidence. In this work, opinion owners and their belief masses are constructed from sensors and employed in a single-layered inference architecture. The belief masses are calculated using beta probability distribution function. The frames of opinion owners are derived automatically ...

متن کامل

A NEW FUZZY MORPHOLOGY APPROACH BASED ON THE FUZZY-VALUED GENERALIZED DEMPSTER-SHAFER THEORY

In this paper, a new Fuzzy Morphology (FM) based on the GeneralizedDempster-Shafer Theory (GDST) is proposed. At first, in order to clarify the similarity ofdefinitions between Mathematical Morphology (MM) and Dempster-Shafer Theory (DST),dilation and erosion morphological operations are studied from a different viewpoint. Then,based on this similarity, a FM based on the GDST is proposed. Unlik...

متن کامل

A Study on Properties of Dempster-Shafer Theory to Probability Theory transformations

In this paper, five conditions that have been proposed by Cobb and Shenoy are studied for nine different mappings from the Dempster-Shafer theory to the probability theory. After comparing these mappings, one of the considerable results indicates that none of the mappings satisfies the condition of invariance with respect to the marginalization process. In more details, the main reason for this...

متن کامل

REGION MERGING STRATEGY FOR BRAIN MRI SEGMENTATION USING DEMPSTER-SHAFER THEORY

Detection of brain tissues using magnetic resonance imaging (MRI) is an active and challenging research area in computational neuroscience. Brain MRI artifacts lead to an uncertainty in pixel values. Therefore, brain MRI segmentation is a complicated concern which is tackled by a novel data fusion approach. The proposed algorithm has two main steps. In the first step the brain MRI is divided to...

متن کامل

محاسبه فاصله عدم قطعیت بر پایه آنتروپی شانون و تئوری دمپستر-شافر از شواهد

Abstract Dempster Shafer theory is the most important method of reviewing uncertainty for information system. This theory as introduced by Dempster using the concept of upper and lower probabilities extended later by Shafer. Another important application of entropy as a basic concept in the information theory  can be used as a uncertainty measurement of the system in specific situation In th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.3119  شماره 

صفحات  -

تاریخ انتشار 2011